Cart is empty

0 items

Total USD 0.00

Peptide Kits

iRT Kit

Retention time normalization kit for time-resolved mass spectrometry.

A single pack for 500 injections. 

iRT Kit

Product number: Ki-3002-1



In stock

2xiRT Kit

Product number: Ki-3002-2



In stock

iRT – indexed Retention Time – is a dimensionless value that defines chromatographic retention of a peptide for a defined resin type (e.g. C18) relative to the iRT Standard. In contrast to empirical retention time, the iRT value of a peptide is stable and enables accurate prediction of peptide retention for any chromatographic setup.

The iRT Standard contains eleven non-naturally occurring synthetic peptides in a pooled mix. Peptides have been carefully optimized for stability, sensitivity and even retention time spacing over the gradient. The iRT Kit allows straightforward determination of peptide iRT values and calibration of chromatographic systems.

By calibrating your LC system with the iRT Kit you will dramatically increase the throughput of your targeted proteomics (MRM and PRM) experiments - even up to 20 times - by bundling more transitions into one run. The benefits of iRT standards are also important in the next-generation proteomic workflows such as DIA or SWATH. iRT peptides allow high-quality spectral library generation and precise normalization of your DIA or SWATH runs.

The iRT peptides work with all Biognosys software solutions: Spectronaut for DIA data analysis, SpectroDive for targeted proteomics experiments, SpectroMine for isobaric labeled quantitative experiments, and QuiC for MS performance monitoring. 

Please contact us for support.

The iRT Kit contains:

  • Dissolution Buffer (1x 2.0 ml tube)
  • iRT Standard (1x 2.0 ml tube)

The kit components are sufficient for approximately 500 injections depending on sample volume and injection amount. 


The 2xiRT Kit contains:

  • Dissolution Buffer (2x 2.0 ml tube)
  • iRT Standard (2x 2.0 ml tube)

The kit components are sufficient for approximately 1000 injections depending on sample volume and injection amount.  


The iRT Kit is used in time resolved mass spectrometry as a two-step process:

  1. Determine iRT values of target peptides in relation to the iRT Standard
  2. Calibrate LC system with iRT Standard and accurately predict retention time of target peptides

See the Quick Reference Card for detailed information on how to use the iRT Kit.



Please contact us for support.

iRT Kit Quick Reference Card

2xiRT Kit Quick Reference Card

iRT Kit Quick Reference Card (China)

2xiRT Kit Quick Reference Card (China)

iRT Kit Safety Data Sheet (MSDS)

iRT Kit reference sheet for transitions and sequence information (excel file)

FASTA of iRT peptides for shotgun search

iRT Peptides Volume Calculator (excel file)

iRT Real Sequences lists real iRT sequences and compares them to previously used nominal sequences (excel file)



Please contact us for support.

Visit Science Hub to access all scientific and technical content (publications, videos, application notes, posters and more) related to Biognosys technology, products and services.

Peer-reviewed papers

  1. von Ziegler LM, Selevsek N, Tweedie-Cullen RY, Kremer E, Mansuy IM. Subregion-Specific Proteomic Signature in the Hippocampus for Recognition Processes in Adult Mice. Cell Rep. 2018; 22(12):3362-3374.
  2. Krasny L, Bland P, Kogata N, Wai P, Howard BA, Natrajan RC, Huang PH. SWATH mass spectrometry as a tool for quantitative profiling of the matrisome. J Proteomics. 2018 Mar 1.
  3. Buczak K, Ori A, Kirkpatrick JM, Holzer K, Dauch D, et al. Spatial Tissue Proteomics Quantifies Inter- and Intratumor Heterogeneity in Hepatocellular Carcinoma (HCC). Mol Cell Proteomics. 2018; 17(4):810-825.
  4. Mattugini N, Merl-Pham J, Petrozziello E, Schindler L, Bernhagen J, Hauck SM, Götz M. Influence of white matter injury on gray matter reactive gliosis upon stab wound in the adult murine cerebral cortex. Glia. 2018 Mar 24.
  5. Keam SP, Gulati T, Gamell C, Caramia F, Huang C, Schittenhelm RB, Kleifeld O, Neeson PJ, Haupt Y, Williams SG. Exploring the oncoproteomic response of human prostate cancer to therapeutic radiation using data-independent acquisition (DIA) mass spectrometry. Prostate. 2018 Mar 9.
  6. Guri Y, Colombi M, Dazert E, Hindupur SK, Roszik J, et al. mTORC2 Promotes Tumorigenesis via Lipid Synthesis. Cancer Cell. 2017; 32(6):807-823.e12.
  7. Lin L, Zheng J, Yu Q, Chen W, Xing J, Chen C, Tian R. High throughput and accurate serum proteome profiling by integrated sample preparation technology and single-run data independent mass spectrometry analysis. J Proteomics. 2018; 174:9-16.
  8. Piazza I, Kochanowski K, Cappelletti V, Fuhrer T, Noor E, Sauer U, Picotti P. A Map of Protein-Metabolite Interactions Reveals Principles of Chemical Communication. Cell. 2018; 172(1-2):358-372.e23.
  9. Musa YR, Boller S, Puchalska M, Grosschedl R, Mittler G. Comprehensive Proteomic Investigation of Ebf1 Heterozygosity in Pro-B Lymphocytes Utilizing Data Independent Acquisition. J Proteome Res. 2018; 17(1):76-85.
  10. Huang J, Wang J, Li Q, Zhang Y, Zhang X. Enzyme and Chemical Assisted N-Terminal Blocked Peptides Analysis, ENCHANT, as a Selective Proteomics Approach Complementary to Conventional Shotgun Approach. J Proteome Res. 2018; 17(1):212-221.
  11. Lepper MF, Ohmayer U, von Toerne C, Maison N, Ziegler AG, Hauck SM. Proteomic Landscape of Patient-Derived CD4+ T Cells in Recent-Onset Type 1 Diabetes. J Proteome Res. 2018; 17(1):618-634.
  12. Messner S, Fredriksson L , Lauschke VM, Roessger K , Escher C, Bober M, et al. Transcriptomic, Proteomic, and Functional Long-Term Characterization of Multicellular Three-Dimensional Human Liver Microtissues. Applied In Vitro Toxicology.Mar 2018.ahead of print
  13. Zhang W, Chen X, Yan Z, Chen Y, Cui Y, Chen B, et al. Detergent-Insoluble Proteome Analysis Revealed Aberrantly Aggregated Proteins in Human Preeclampsia Placentas. J Proteome Res. 2017; 16(12):4468-4480.
  14. Bruderer R, Bernhardt OM, Gandhi T, Xuan Y, Sondermann J, Schmidt M, Gomez-Varela D, Reiter L. Optimization of Experimental Parameters in Data-Independent Mass Spectrometry Significantly Increases Depth and Reproducibility of Results. Mol Cell Proteomics. 2017; 16(12):2296-2309.
  15. Michalik S, Depke M, Murr A, Gesell Salazar M, Kusebauch U, Sun Z, et al. A global Staphylococcus aureus proteome resource applied to the in vivo characterization of host-pathogen interactions. Sci Rep. 2017; 7(1):9718.
  16. Le Duff M, Gouju J, Jonchère B, Guillon J, Toutain B, Boissard A, Henry C, Guette C, Lelièvre E, Coqueret O. Regulation of senescence escape by the cdk4-EZH2-AP2M1 pathway in response to chemotherapy. Cell Death Dis. 2018; 9(2):199.
  17. Balahmar RM, Boocock DJ, Coveney C, Ray S, Vadakekolathu J, Regad T, Ali S, Sivasubramaniam S. Identification and characterisation of NANOG+/ OCT-4high/SOX2+ doxorubicin-resistant stem-like cells from transformed trophoblastic cell lines. Oncotarget. 2018; 9(6):7054-7065.
  18. Miller B, Selevsek N, Grossmann J, Kilminster T, Scanlon T, et al. Ovine liver proteome: Assessing mechanisms of seasonal weight loss tolerance between Merino and Damara sheep. J Proteomics. 2018 Feb 18.
  19. Latonen L, Afyounian E, Jylhä A, Nättinen J, Aapola U, et al. Integrative proteomics in prostate cancer uncovers robustness against genomic and transcriptomic aberrations during disease progression. Nat Commun. 2018; 9(1):1176.
  20. Arya S, Emri E, Synowsky SA, Shirran SL, Barzegar-Befroei N, et al. Quantitative analysis of hydroxyapatite-binding plasma proteins in genotyped individuals with late-stage age-related macular degeneration. Exp Eye Res. 2018; 172:21-29.
  21. Hoyer J, Bartel J, Gómez-Mejia A, Rohde M, Hirschfeld C, et al. Proteomic response of Streptococcus pneumoniae to iron limitation. Int J Med Microbiol. 2018 Feb 13.
  22. Ritz D, Sani E, Debiec H, Ronco P, Neri D, Fugmann T. Membranal and Blood-Soluble HLA Class II Peptidome Analyses Using Data-Dependent and Independent Acquisition. Proteomics. 2018 Jan 3.
  23. Husson G, Delangle A, O'Hara J, Cianferani S, Gervais A, Van Dorsselaer A, Bracewell D, Carapito C. Dual Data-Independent Acquisition Approach Combining Global HCP Profiling and Absolute Quantification of Key Impurities during Bioprocess Development. Anal Chem. 2018; 90(2):1241-1247.
  24. Ortea I, Ruiz-Sánchez I, Cañete R, Caballero-Villarraso J, Cañete MD. Identification of candidate serum biomarkers of childhood-onset growth hormone deficiency using SWATH-MS and feature selection. J Proteomics. 2018; 175:105-113.
  25. Reitsma JM, Liu X, Reichermeier KM, Moradian A, Sweredoski MJ, Hess S, Deshaies RJ. Composition and Regulation of the Cellular Repertoire of SCF Ubiquitin Ligases. Cell. 2017; 171(6):1326-1339.e14.
  26. Vyas FS, Nelson CP, Dickenson JM. Role of transglutaminase 2 in A1 adenosine receptor- and β2-adrenoceptor-mediated pharmacological pre- and post-conditioning against hypoxia-reoxygenation-induced cell death in H9c2 cells. Eur J Pharmacol. 2018; 819:144-160.
  27. Brabencová S, Ihnatová I, Potěšil D, Fojtová M, Fajkus J, Zdráhal Z, Lochmanová G. Variations of Histone Modification Patterns: Contributions of Inter-plant Variability and Technical Factors. Front Plant Sci. 2017; 8:2084.
  28. Blattmann P, Henriques D, Zimmermann M, Frommelt F, Sauer U, et al. Systems Pharmacology Dissection of Cholesterol Regulation Reveals Determinants of Large Pharmacodynamic Variability between Cell Lines. Cell Syst. 2017; 5(6):604-619.e7.
  29. Tang S, Deng S, Guo J, Chen X, Zhang W, et al. Deep Coverage Tissue and Cellular Proteomics Revealed IL-1β Can Independently Induce the Secretion of TNF-Associated Proteins from Human Synoviocytes. J Immunol. 2018 Jan 15;200(2):821-833.
  30. Ilies M, Sappa PK, Iuga CA, Loghin F, Gesell Salazar M, et al. Plasma protein profiling of patients with intraductal papillary mucinous neoplasm of the pancreas as potential precursor lesions of pancreatic cancer. Clin Chim Acta. 2018; 477:127-134.
  31. Bachofner M, Speicher T, Bogorad RL, Muzumdar S, Derrer CP, Hürlimann F, et al. Large-Scale Quantitative Proteomics Identifies the Ubiquitin Ligase Nedd4-1 as an Essential Regulator of Liver Regeneration. Dev Cell. 2017 Sep 25;42(6):616-625.e8.
  32. Govaert E, Van Steendam K, Willems S, Vossaert L, Dhaenens M, Deforce D. Comparison of fractionation proteomics for local SWATH library building. Proteomics. 2017 Aug;17(15-16).
  33. Nättinen J, Jylhä A, Aapola U, Enríquez-de-Salamanca A, Pinto-Fraga J, et al. Topical fluorometholone treatment and desiccating stress change inflammatory protein expression in tears. Ocul Surf. 2018; 16(1):84-92.
  34. Poljak K, Selevsek N, Ngwa E, Grossmann J, Losfeld ME, Aebi M. Quantitative Profiling of N-linked Glycosylation Machinery in Yeast Saccharomyces cerevisiae. Mol Cell Proteomics. 2018; 17(1):18-30.
  35. Ochsner AM, Christen M, Hemmerle L, Peyraud R, Christen B, Vorholt JA. Transposon Sequencing Uncovers an Essential Regulatory Function of Phosphoribulokinase for Methylotrophy. Curr Biol. 2017 Sep 11;27(17):2579-2588.e6.
  36. Ritz D, Kinzi J, Neri D, Fugmann T. Data-Independent Acquisition of HLA Class I Peptidomes on the Q Exactive Mass Spectrometer Platform. Proteomics. 2017 Oct;17(19).
  37. Vyas FS, Nelson CP, Freeman F, Boocock DJ, Hargreaves AJ, Dickenson JM. β2-adrenoceptor-induced modulation of transglutaminase 2 transamidase activity in cardiomyoblasts. Eur J Pharmacol. 2017 Oct 15;813:105-121.
  38. Martins-Marques T, Anjo SI, Ribeiro-Rodrigues T, Manadas B, Girao H. Targeted Approach for Proteomic Analysis of a Hidden Membrane Protein. Methods Mol Biol. 2017; 1619:151-172.
  39. Govaert E, Van Steendam K, Willems S, Vossaert L, Dhaenens M, Deforce D. Comparison of fractionation proteomics for local SWATH library building. Proteomics. 2017 Jun 30.
  40. Tascher G, Brioche T, Maes P, Chopard A, O'Gorman D, Gauquelin-Koch G, et al. Proteome-wide Adaptations of Mouse Skeletal Muscles during a Full Month in Space. J Proteome Res. 2017; 16(7):2623-2638.
  41. Wu Y, Williams EG, Aebersold R. Application of SWATH Proteomics to Mouse Biology. Curr Protoc Mouse Biol. 2017; 7(2):130-143.
  42. Georg J, Kostova G, Vuorijoki L, Schön V, Kadowaki T, Huokko T, et al. Acclimation of Oxygenic Photosynthesis to Iron Starvation Is Controlled by the sRNA IsaR1. Curr Biol. 2017; 27(10):1425-1436.e7.
  43. Mehaffy C, Dobos KM, Nahid P, Kruh-Garcia NA. Second generation multiple reaction monitoring assays for enhanced detection of ultra-low abundance Mycobacterium tuberculosis peptides in human serum. Clin Proteomics. 2017 Jun 5;14:21.
  44. Kolbowski L, Mendes ML, Rappsilber J. Optimizing the Parameters Governing the Fragmentation of Cross-Linked Peptides in a Tribrid Mass Spectrometer. Anal Chem. 2017; 89(10):5311-5318.
  45. Whiteaker JR, Zhao L, Schoenherr RM, Kennedy JJ, Ivey RG, Paulovich AG. Peptide Immunoaffinity Enrichment with Targeted Mass Spectrometry: Application to Quantification of ATM Kinase Phospho-Signaling. Methods Mol Biol. 2017;1599:197-213.
  46. Ebhardt HA, Degen S, Tadini V, Schilb A, Johns N, Greig CA, et al. Comprehensive proteome analysis of human skeletal muscle in cachexia and sarcopenia: A pilot study. J Cachexia Sarcopenia Muscle. 2017 Mar 15.
  47. Nemeth J, Vongrad V, Metzner KJ, Strouvelle VP, Weber R, Pedrioli P, et al. In Vivo and in Vitro Proteome Analysis of Human Immunodeficiency Virus (HIV)-1-infected, Human CD4+ T Cells. Mol Cell Proteomics. 2017; 16(4 suppl 1):S108-S123.
  48. Schilling B, Gibson BW, Hunter CL. Generation of High-Quality SWATH® Acquisition Data for Label-free Quantitative Proteomics Studies Using TripleTOF® Mass Spectrometers. Methods Mol Biol. 2017;1550:223-233.
  49. Uzozie AC, Selevsek N, Wahlander A, Nanni P, Grossmann J, Weber A, Buffoli F, Marra G. Targeted Proteomics for Multiplexed Verification of Markers of Colorectal Tumorigenesis. Mol Cell Proteomics. 2017; 16(3):407-427.
  50. Bruderer R, Sondermann J, Tsou CC, Barrantes-Freer A, Stadelmann C, et al. New targeted approaches for the quantification of data-independent acquisition mass spectrometry. Proteomics. 2017; 17(9).
  51. Li S, Cao Q, Xiao W, Guo Y, Yang Y, Duan X, Shui W. Optimization of Acquisition and Data-Processing Parameters for Improved Proteomic Quantification by Sequential Window Acquisition of All Theoretical Fragment Ion Mass Spectrometry. J Proteome Res. 2017; 16(2):738-747.
  52. Cardoso JM, Anjo SI, Fonseca L, Egas C, Manadas B, Abrantes I. Bursaphelenchus xylophilus and B. mucronatus secretomes: a comparative proteomic analysis. Sci Rep. 2016; 6:39007.
  53. Feng Y, Picotti P. Selected Reaction Monitoring to Measure Proteins of Interest in Complex Samples: A Practical Guide. Methods Mol Biol. 2016;1394:43-56.
  54. Krokhin OV, Spicer V. Generation of accurate peptide retention data for targeted and data independent quantitative LC-MS analysis: Chromatographic lessons in proteomics. Proteomics. 2016; 16(23):2931-2936.
  55. Vowinckel J, Zelezniak A, Kibler A, Bruderer R, Muelleder M, Reiter L, Ralser M. Precise label-free quantitative proteomes in high-throughput by microLC and data-independent SWATH acquisition. bioRxiv Sep 5.
  56. Suwannatrai K, Suwannatrai A, Tabsripair P, Welbat JU, Tangkawattana S, et al. Differential Protein Expression in the Hemolymph of Bithynia siamensis goniomphalos Infected with Opisthorchis viverrini. PLoS Negl Trop Dis. 2016; 10(11):e0005104.
  57. Silva MC, Cheng C, Mair W, Almeida S, Fong H, Biswas MH, Zhang Z, et al. Human iPSC-Derived Neuronal Model of Tau-A152T Frontotemporal Dementia Reveals Tau-Mediated Mechanisms of Neuronal Vulnerability. Stem Cell Reports. 2016; 7(3):325-40. 
  58. Angeleri M, Muth-Pawlak D, Aro EM, Battchikova N. Study of O-Phosphorylation Sites in Proteins Involved in Photosynthesis-Related Processes in Synechocystis sp. Strain PCC 6803: Application of the SRM Approach. J Proteome Res. 2016; 15(12):4638-4652.
  59. Vialas V, Colomé-Calls N, Abian J, Aloria K, Alvarez-Llamas G, Antúnez O, et al. A multicentric study to evaluate the use of relative retention times in targeted proteomics. J Proteomics. 2016; 152:138-149.
  60. Voisinne G, García-Blesa A, Chaoui K, Fiore F, Bergot E, Girard L, et al. Co-recruitment analysis of the CBL and CBLB signalosomes in primary T cells identifies CD5 as a key regulator of TCR-induced ubiquitylation. Mol Syst Biol. 2016; 12(7):876.
  61. Müller DB, Schubert OT, Röst H, Aebersold R, Vorholt JA. Systems-level Proteomics of Two Ubiquitous Leaf Commensals Reveals Complementary Adaptive Traits for Phyllosphere Colonization. Mol Cell Proteomics. 2016; 15(10):3256-3269.
  62. Faridi P, Aebersold R, Caron E. A first dataset toward a standardized community-driven global mapping of the human immunopeptidome. Data Brief. 2016; 7:201-5.
  63. Kusebauch U, Campbell DS, Deutsch EW, Chu CS, Spicer DA, Brusniak MY, et al. Human SRMAtlas: A Resource of Targeted Assays to Quantify the Complete Human Proteome. Cell. 2016; 166(3):766-78.
  64. Bruderer R, Bernhardt OM, Gandhi T, Reiter L. High-precision iRT prediction in the targeted analysis of data-independent acquisition and its impact on identification and quantitation. Proteomics. 2016; 16(15-16): 2246-56.
  65. Trotta A, Suorsa M, Rantala M, Lundin B, Aro EM. Serine and threonine residues of plant STN7 kinase are differentially phosphorylated upon changing light conditions and specifically influence the activity and stability of the kinase. Plant J. 2016.
  66. Anjo SI, Lourenço AS, Melo MN, Santa C, Manadas B. Unraveling Mesenchymal Stem Cells' Dynamic Secretome Through Nontargeted Proteomics Profiling. Methods Mol Biol. 2016;1416:521-49.
  67. Pires AO, Mendes-Pinheiro B, Teixeira FG, Anjo SI, Ribeiro-Samy S, Gomes ED, et al. Unveiling the Differences of Secretome of Human Bone Marrow Mesenchymal Stem Cells, Adipose Tissue-Derived Stem Cells, and Human Umbilical Cord Perivascular Cells: A Proteomic Analysis. Stem Cells Dev. 2016 15; 25(14):1073-83.
  68. Kockmann T, Trachsel C, Panse C, Wahlander A, Selevsek N, Grossmann J, Wolski WE, Schlapbach R. Targeted proteomics coming of age - SRM, PRM and DIA performance evaluated from a core facility perspective. Proteomics. 2016.
  69. Stenemo M, Teleman J, Sjöström M, Grubb G, Malmström E, Malmström J, Niméus E. Cancer associated proteins in blood plasma: Determining normal variation. Proteomics. 2016; 16(13):1928-37.
  70. Singh KD, Roschitzki B, Snoek LB, Grossmann J, Zheng X, Elvin M, et al. Natural Genetic Variation Influences Protein Abundances in C. elegans Developmental Signalling Pathways. PLoS One. 2016; 11(3):e0149418.
  71. Vyas FS, Hargreaves AJ, Bonner PL, Boocock DJ, Coveney C, Dickenson JM. A1 adenosine receptor-induced phosphorylation and modulation of transglutaminase 2 activity in H9c2 cells: A role in cell survival. Biochem Pharmacol. 2016; 107: 41-58.
  72. Ortea I, Rodríguez-Ariza A, Chicano-Gálvez E, Arenas Vacas MS, Jurado Gámez B. Discovery of potential protein biomarkers of lung adenocarcinoma in bronchoalveolar lavage fluid by SWATH MS data-independent acquisition and targeted data extraction. J Proteomics. 2016; 138:106-114.
  73. Bollinger JG, Stergachis AB, Johnson RS, Egertson JD, MacCoss MJ. Selecting Optimal Peptides for Targeted Proteomic Experiments in Human Plasma Using In Vitro Synthesized Proteins as Analytical Standards. Methods Mol Biol. 2016; 1410: 207-221.
  74. Villeneuve LM, Purnell PR, Stauch KL, Callen SE, Buch SJ, Fox HS. HIV-1 transgenic rats display mitochondrial abnormalities consistent with abnormal energy generation and distribution. J Neurovirol. 2016 Feb 3.
  75. Faridi P, Aebersold R, Caron E. A first dataset toward a standardized community-driven global mapping of the human immunopeptidome. Data Brief. 2016; 7: 201-205.
  76. Mair W, Muntel J, Tepper K, Tang S, Biernat J, Seeley WW, et al. FLEXITau: Quantifying Post-translational Modifications of Tau Protein in Vitro and in Human Disease. Anal Chem. 2016; 88(7): 3704-3714.
  77. Holewinski RJ, Parker SJ, Matlock AD, Venkatraman V, Van Eyk JE. Methods for SWATH™: Data Independent Acquisition on TripleTOF Mass Spectrometers. Methods Mol Biol. 2016; 1410: 265-279.
  78. Russell MR, Walker MJ, Williamson AJ, Gentry-Maharaj A, Ryan A, Kalsi J, et al. Protein Z: A putative novel biomarker for early detection of ovarian cancer. Int J Cancer. 2016; 138(12): 2984-2992.
  79. Holman SW, McLean L, Eyers CE. RePLiCal: A QconCAT Protein for Retention Time Standardization in Proteomics Studies. J Proteome Res. 2016; 15(3):1090-1102.
  80. Kirk JA, Chakir K, Lee KH, Karst E, Holewinski RJ, Pironti G, Tunin RS, Pozios I, Abraham TP, de Tombe P, Rockman HA, Van Eyk JE, Craig R, Farazi TG, Kass DA. Pacemaker-induced transient asynchrony suppresses heart failure progression. Sci Transl Med. 2015; 7(319):319ra207.
  81. Feng Y, Picotti P. Selected Reaction Monitoring to Measure Proteins of Interest in Complex Samples: A Practical Guide. Methods Mol Biol. 2016;1394:43-56.
  82. Vuorijoki L, Isojärvi J, Kallio P, Kouvonen P, Aro EM, Corthals GL, Jones PR, Muth-Pawlak D. Development of a Quantitative SRM-Based Proteomics Method to Study Iron Metabolism of Synechocystis sp. PCC 6803. J Proteome Res. 2016; 15(1):266-279.
  83. Tyleckova J, Valekova I, Zizkova M, Rakocyova M, Marsala S, Marsala M, Gadher SJ, Kovarova H. Surface N-glycoproteome patterns reveal key proteins of neuronal differentiation. J Proteomics. 2016; 132:13-20.
  84. Caron E, Espona L, Kowalewski DJ, Schuster H, Ternette N, Alpízar A, et al. An open-source computational and data resource to analyze digital maps of immunopeptidomes. Elife. 2015 Jul 8;4. doi: 10.7554/eLife.07661.
  85. Thomas SN, Harlan R, Chen J, Aiyetan P, Liu Y, Sokoll LJ, Aebersold R, Chan DW, Zhang H. Multiplexed Targeted Mass Spectrometry-Based Assays for the Quantification of N-Linked Glycosite-Containing Peptides in Serum. Anal Chem. 2015 Oct 21.
  86. Martins-Marques T, Anjo SI, Pereira P, Manadas B, Girao H. Interacting Network of the Gap Junction (GJ) Protein Connexin43 (Cx43) is Modulated by Ischemia and Reperfusion in the Heart. Mol Cell Proteomics. 2015; 14(11): 3040-3055.
  87. Chen L, Li J, Guo T, Ghosh S, Koh SK, Tian D, et al. Global Metabonomic and Proteomic Analysis of Human Conjunctival Epithelial Cells (IOBA-NHC) in Response to Hyperosmotic Stress. J Proteome Res. 2015; 14(9): 3982-3995.
  88. Teixeira FG, Panchalingam KM, Anjo SI, Manadas B, Pereira R, Sousa N, Salgado AJ, Behie LA. Do hypoxia/normoxia culturing conditions change the neuroregulatory profile of Wharton Jelly mesenchymal stem cell secretome? Stem Cell Res Ther. 2015; 6:133.
  89. Schaefer KN, Geil WM, Sweredoski MJ, Moradian A, Hess S, Barton JK. Oxidation of p53 through DNA charge transport involves a network of disulfides within the DNA-binding domain. Biochemistry. 2015 Jan 27;54(3):932-41.
  90. Mueller S, Wahlander A, Selevsek N, Otto C, Ngwa EM, Poljak K, Frey AD, Aebi M, Gauss R. Protein degradation corrects for imbalanced subunit stoichiometry in OST complex assembly. Mol Biol Cell. 2015; 26(14):2596-608.
  91. Sjöström M, Ossola R, Breslin T, Rinner O, Malmström L, Schmidt A, Aebersold R, Malmström J, Niméus E. A Combined Shotgun and Targeted Mass Spectrometry Strategy for Breast Cancer Biomarker Discovery. J Proteome Res. 2015; 14(7):2807-18.
  92. Schlage P, Kockmann T, Kizhakkedathu JN, Auf dem Keller U. Monitoring matrix metalloproteinase activity at the epidermal-dermal interface by SILAC-iTRAQ-TAILS. Proteomics. 2015; 15(14):2491-502.
  93. Schubert OT, Gillet LC, Collins BC, Navarro P, Rosenberger G, Wolski WE, et al. Building high-quality assay libraries for targeted analysis of SWATH MS data. Nat Protoc. 2015; 10(3):426-41.
  94. DeBlasio SL, Johnson R, Sweeney MM, Karasev A, Gray SM, MacCoss MJ, Cilia M. The Potato leafroll virus structural proteins manipulate overlapping, yet distinct protein interaction networks during infection. Proteomics. 2015 Mar 19. doi: 10.1002/pmic.201400594.
  95. Frankl-Vilches C, Kuhl H, Werber M, Klages S, Kerick M, Bakker A, et al. Using the canary genome to decipher the evolution of hormone-sensitive gene regulation in seasonal singing birds. Genome Biol. 2015; 16(1):19.
  96. Liu Y, Buil A, Collins BC, Gillet LC, Blum LC, Cheng LY, et al. Quantitative variability of 342 plasma proteins in a human twin population. Mol Syst Biol. 2015; 11(2):786.
  97. Schaefer KN, Geil WM, Sweredoski MJ, Moradian A, Hess S, Barton JK. Oxidation of p53 through DNA Charge Transport Involves a Network of Disulfides within the DNA-Binding Domain. Biochemistry. 2015; 54(3):932-41.
  98. Tharakan R, Tao D, Ubaida-Mohien C, Dinglasan RR, Graham DR. Integrated Microfluidic Chip and Online SCX Separation Allows Untargeted Nanoscale Metabolomic and Peptidomic Profiling. J Proteome Res. 2015.
  99. Soste M, Hrabakova R, Wanka S, Melnik A, Boersema P, Maiolica A, et. al. A sentinel protein assay for simultaneously quantifying cellular processes. Nat Methods. 2014; 11(10):1045-8.
  100. Lebert D, Louwagie M, Goetze S, Picard G, Ossola R, Duquesne C, Basler K, Ferro M, Rinner O, Aebersold R, Garin J, Mouz N, Brunner E, Brun V. DIGESTIF: A Universal Quality Standard for the Control of Bottom-Up Proteomics Experiments. J Proteome Res. 2014 Dec 30.
  101. Sabino F, Hermes O, Egli FE, Kockmann T, Schlage P, Croizat P, et al. In Vivo Assessment of Protease Dynamics in Cutaneous Wound Healing by Degradomics Analysis of Porcine Wound Exudates. Mol Cell Proteomics. 2014 Dec 16. pii: mcp.M114.043414
  102. Anjo SI, Santa C, Manadas B. Short GeLC-SWATH: a fast and reliable quantitative approach for proteomic screenings. Proteomics. 2014. doi: 10.1002/pmic.201400221.
  103. Gubin MM, Zhang X, Schuster H, Caron E, Ward JP, Noguchi T, Ivanova Y, et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature. 2014; 515(7528): 577-81.
  104. Konert G, Trotta A, Kouvonen P, Rahikainen M, Durian G, Blokhina O, et al. Protein phosphatase 2A (PP2A) regulatory subunit B'γ interacts with cytoplasmic ACONITASE 3 and modulates the abundance of AOX1A and AOX1D in Arabidopsis thaliana. New Phytol. 2015; 205(3):1250-63.
  105. Rosenberger G, Koh CC, Guo T, Röst HL, Kouvonen P, Collins BC, et al. A repository of assays to quantify 10,000 human proteins by SWATH-MS. Scientific Data. 2014; 1:140031.
  106. Wu Y, Williams EG, Dubuis S, Mottis A, Jovaisaite V, Houten SM, Argmann CA, Faridi P, Wolski W, Kutalik Z, Zamboni N, Auwerx J, Aebersold R. Multilayered genetic and omics dissection of mitochondrial activity in a mouse reference population. Cell. 2014; 158(6):1415-30.
  107. Schütz S, Fischer U, Altvater M, Nerurkar P, Peña C, Gerber M, Chang Y, Caesar S, Schubert OT, Schlenstedt G, Panse VG. A RanGTP-independent mechanism allows ribosomal protein nuclear import for ribosome assembly. Elife. 2014; 3:e03473.
  108. Erzinger MM, Bovet C, Uzozie A, Sturla SJ. Induction of Complementary Function Reductase Enzymes in Colon Cancer Cells by Dithiole-3-thione versus Sodium Selenite. J Biochem Mol Toxicol. 2015; 29(1):10-20.
  109. Wollein Waldetoft K, Karlsson C, Gram M, Malmström J, Mörgelin M, Frick IM, Björck L. Surface proteins of group G Streptococcus in different phases of growth: patterns of production and implications for the host-bacteria relationship. Microbiology. 2014; 160(Pt 2):279-86. 
  110. Liu Y, Chen J, Sethi A, Li QK, Chen L, Collins B, et al. Glycoproteomic analysis of prostate cancer tissues by SWATH mass spectrometry discovers N-acylethanolamine acid amidase and protein tyrosine kinase 7 as signatures for tumor aggressiveness. Mol Cell Proteomics. 2014; 13(7):1753-68.
  111. Sjöholm K, Karlsson C, Linder A, Malmström J. A comprehensive analysis of the Streptococcus pyogenes and human plasma protein interaction network. Mol Biosyst. 2014; 10(7):1698-708. 
  112. Grigoryan M, Shamshurin D, Spicer V, Krokhin OV. A unifying expression scale for peptide hydrophobicity in proteomic RP HPLC experiments. Anal Chem. 2013; 85(22):10878-10886. 
  113. Ori A, Iskar M, Andrés-Pons A, Escher C, Khanh Bui H, Sparks L, Solis-Mezarino V, Rinner O, Bork P, Lemke EA, Beck M. Cell type-specific nuclear pores: a case in point for context-dependent stoichiometry of molecular machines. Molecular Systems Biology. 2013; 9:648. 
  114. Schubert OT, Mouritsen J, Ludwig C, Röst HL, Rosenberger G, Arthur PK, et al. The Mtb Proteome Library: A Resource of Assays to Quantify the Complete Proteome of Mycobacterium tuberculosis. Cell Host Microbe. 2013; 13(5):602-612.
  115. Bereman MS, MacLean B, Tomazela DM, Liebler DC, MacCoss MJ. The development of selected reaction monitoring methods for targeted proteomics via empirical refinement. Proteomics. 2012; 12:1134–1141. 
  116. Maiolica A, Jünger MA, Ezkurdia I, Aebersold R. Targeted proteome investigation via selected reaction monitoring mass spectrometry. Journal of Proteomics. 2012; 75(12):3495–3513.
  117. Escher C, Reiter L, MacLean B, Ossola R, Herzog F, Chilton J, MacCoss M.J, Rinner O. Using iRT, a normalized retention time for more targeted measurement of peptides. Proteomics. 2012; 12(8):1111-1121.


If we forgot to include any paper using our technology in the list above, please don’t hesitate to let us know at

Please contact us for support.

What does iRT stand for?

iRT is stands for indexed retention time. It is a dimensionless value that allows the transferring of retention time information of a peptide to different chromatographic set ups. 

What are iRT peptides?

iRT peptides are 11 non-naturally occurring chemically synthesized peptides that are used in the next generation proteomics workflows to accurately calculate the indexed retention time of peptides on a chromatographic set up. 

Why is it beneficial to add the iRT peptides to all my samples?

Apart from predicting the retention time the iRT peptides are used for mass calibration and QC monitoring of the LC-MS set up. In an HRM-MS experiment the iRT or HRM peptides are further used as anchor points for the data analysis. 

What is the difference between the iRT peptides and the HRM calibration peptides?

On top of the 11 peptides in the iRT kit the HRM calibration kit contains additional peptides. These are used in the older versions of Spectronaut. With the new algorithm of SN 9 the HRM peptides are no longer a requirement and can be replaced with the iRT peptides if desired. This has the advantage that only one set of peptides are required for customers using all three next-generation proteomics workflows offered by Biognosys. 

Do I really need to add the iRT peptides to all my runs because they make the per sample costs higher?

As of Spectronaut 9 the iRT peptides are not required in all cases for the samples used for spectral library generation. Yet, we strongly advise using them as in seldom cases spectral library generation can fail without them. For all DIA runs the peptides are required by the software. Adding the iRT peptides to the sample increase the per sample costs by less than 1% (~30cents/sample). Further, the dilution can be optimized on the newest generation of mass spectrometers to further reduce the per run cost additions.

Please contact us for support.


Let us help you do great proteomics!

Please click here to contact us.